If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+t-40=0
a = 1; b = 1; c = -40;
Δ = b2-4ac
Δ = 12-4·1·(-40)
Δ = 161
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{161}}{2*1}=\frac{-1-\sqrt{161}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{161}}{2*1}=\frac{-1+\sqrt{161}}{2} $
| 3/8x-1/5x+10=3/10x | | 4x^2+3x-14=0 | | 2•x+x+3=238 | | 2(x+3)=238 | | 0=5/11y+20 | | 9x=6-30 | | 0=3/11y-20 | | {4}{x}-{5}={1}{3} | | 0=3/11y=20 | | 172=96t-5t^2 | | x3-6x2-16x+32=0 | | d=5.09 | | (x+3)^2-(x-2)^2=5 | | -84=d3 | | 6+2x=6(x+2)-5(x-2) | | (x^2-6^2)=8 | | (x^2-6^2)^1/2=8 | | 5x+3=-34 | | 6+2s–8s=18 | | -(x+7)+9=4x+2-5x | | -(8-m)=-(9m+8) | | -28x^2+8x+3=0 | | 6x-8=89 | | 5+11r-1=6r+22-4r | | 10=y÷-3 | | 106.7-8.6x=3.4x+32.3 | | 2(x-1)=5x-4-3x | | 9p+6=8p+8 | | (x-40)(x+70)=0 | | 3(6x−9)=29−2(x+2) | | 6-2y=9-9y+7y | | 2y^2-2-3y=0 |